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6.3 Vector potential
We found that the scalar potential function φ(x, y, z) gave us a simple 
way to calculate the electrostatic field of a charge distribution. If there is 
some charge distribution ρ(x, y, z), the potential at any point (x1, y1, z1) 
is given by the volume integral

φ(x1, y1, z1) = 1
4πε0

∫
ρ(x2, y2, z2) dv2

r12
. (6.30)

The integration is extended over the whole charge distribution, and r12 is
the magnitude of the distance from (x2, y2, z2) to (x1, y1, z1). The electric
field E is obtained as the negative of the gradient of φ:

E = −grad φ. (6.31)

The same trick won’t work for the magnetic field, because of the
essentially different character of B. The curl of B is not necessarily zero,
so B can’t, in general, be the gradient of a scalar potential. However, we
know another kind of vector derivative, the curl. It turns out that we can
usefully represent B, not as the gradient of a scalar function, but as the
curl of a vector function, like this:

B = curl A (6.32)

By obvious analogy, we call A the vector potential. It is not obvi-
ous, at this point, why this tactic is helpful. That will have to emerge as
we proceed. It is encouraging that Eq. (6.28) is automatically satisfied,
since div curl A = 0, for any A. Or, to put it another way, the fact that
div B = 0 presents us with the opportunity to represent B as the curl of
another vector function.
6 The student may wonder why we couldn’t have started from some equivalent of

Coulomb’s law for the interaction of currents. The answer is that a piece of a current
filament, unlike an electric charge, is not an independent object that can be physically
isolated. You cannot perform an experiment to determine the field from part of a
circuit; if the rest of the circuit isn’t there, the current can’t be steady without violating
the continuity condition.
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Example (Vector potential for a wire) As an example of a vector poten-
tial, consider a long straight wire carrying a current I. In Fig. 6.11 we see the
current coming toward us out of the page, flowing along the positive z axis. Out-
side the wire, what is the vector potential A?

y

Current flowing
in z direction

B

^

r

x

q

q

Figure 6.11.
Some field lines around a current filament.
Current flows toward you (out of the plane of the
paper).

Solution We know what the magnetic field of the straight wire looks like.
The field lines are circles, as sketched already in Fig. 6.5. A few are shown in
Fig. 6.11. The magnitude of B is μ0I/2πr. Using a unit vector θ̂ in the tangential
direction, we can write the vector B as

B = μ0I
2πr

θ̂ . (6.33)

We want to find a vector field A whose curl equals this B. Equation (F.2) in
Appendix F gives the expression for the curl in cylindrical coordinates. In view
of Eq. (6.33), we are concerned only with the θ̂ component of the curl expression,
which is (∂Ar/∂z − ∂Az/∂r)θ̂ . Due to the symmetry along the z axis, we can’t
have any z dependence, so we are left with only the −(∂Az/∂r)θ̂ term. Equating
this with the B in Eq. (6.33) gives

∇ × A = B �⇒ −∂Az

∂r
= μ0I

2πr
�⇒ A = −ẑ

μ0I
2π

ln r. (6.34)

This last step can formally be performed by separating variables and integrating.
But there is no great need to do this, because we know that the integral of 1/r
is ln r. The task of Problem 6.4 is to use Cartesian coordinates to verify that the
above A has the correct curl. See also Problem 6.5.

Of course, the A in Eq. (6.34) is not the only function that could serve as
the vector potential for this particular B. To this A could be added any vector
function with zero curl. The above result holds for the space outside the wire.
Inside the wire, B is different, so A must be different also. It is not hard to find
the appropriate vector potential function for the interior of a solid round wire;
see Exercise 6.43.

Our job now is to discover a general method of calculating A, when
the current distribution J is given, so that Eq. (6.32) will indeed yield
the correct magnetic field. In view of Eq. (6.25), the relation between
J and A is

curl (curl A) = μ0J. (6.35)

Equation (6.35), being a vector equation, is really three equations.
We shall work out one of them, say the x-component equation. The x
component of curl B is ∂Bz/∂y − ∂By/∂z. The z and y components of B
are, respectively,

Bz = ∂Ay

∂x
− ∂Ax

∂y
, By = ∂Ax

∂z
− ∂Az

∂x
. (6.36)

Thus the x-component part of Eq. (6.35) reads

∂

∂y

(
∂Ay

∂x
− ∂Ax

∂y

)
− ∂

∂z

(
∂Ax

∂z
− ∂Az

∂x

)
= μ0Jx. (6.37)
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We assume our functions are such that the order of partial differentiation
can be interchanged. Taking advantage of that and rearranging a little,
we can write Eq. (6.37) in the following way:

−∂2Ax

∂y2 − ∂2Ax

∂z2 + ∂

∂x

(
∂Ay

∂y

)
+ ∂

∂x

(
∂Az

∂z

)
= μ0Jx. (6.38)

To make the thing more symmetrical, let’s add and subtract the same
term, ∂2Ax/∂x2, on the left:7

−∂2Ax

∂x2 − ∂2Ax

∂y2 − ∂2Ax

∂z2 + ∂

∂x

(
∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

)
= μ0Jx. (6.39)

We can now recognize the first three terms as the negative of the
Laplacian of Ax. The quantity in parentheses is the divergence of A. Now,
we have a certain latitude in the construction of A. All we care about is
its curl; its divergence can be anything we like. Let us require that

div A = 0. (6.40)

In other words, among the various functions that might satisfy our requi-
rement that curl A = B, let us consider as candidates only those that also
have zero divergence. To see why we are free to do this, suppose we had
an A such that curl A = B, but div A = f (x, y, z) �= 0. We claim that,
for any function f , we can always find a field F such that curl F = 0 and
div F = −f . If this claim is true, then we can replace A with the new
field A + F. This field has its curl still equal to the desired value of B,
while its divergence is now equal to the desired value of zero. And the
claim is indeed true, because if we treat −f like the charge density ρ

that generates an electrostatic field, we obviously can find a field F, the
analog of the electrostatic E, such that curl F = 0 and div F = −f ; the
prescription is given in Fig. 2.29(a), without the ε0.

With div A = 0, the quantity in parentheses in Eq. (6.39) drops
away, and we are left simply with

∂2Ax

∂x2 + ∂2Ax

∂y2 + ∂2Ax

∂z2 = −μ0Jx, (6.41)

where Jx is a known scalar function of x, y, z. Let us compare Eq. (6.41)
with Poisson’s equation, Eq. (2.73), which reads

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = − ρ

ε0
. (6.42)

The two equations are identical in form. We already know how to find a
solution to Eq. (6.42). The volume integral in Eq. (6.30) is the

7 This equation is the x component of the vector identity, ∇ × (∇ × A) = −∇2A+
∇(∇ · A). So in effect, what we’ve done here is prove this identity. Of course, we could
have just invoked this identity and applied it to Eq. (6.35), skipping all of the
intermediate steps. But it’s helpful to see the proof.



296 The magnetic field

prescription. Therefore a solution to Eq. (6.41) must be given by
Eq. (6.30), with ρ/ε0 replaced by μ0Jx:

Ax(x1, y1, z1) = μ0

4π

∫
Jx(x2, y2, z2) dv2

r12
. (6.43)

The other components must satisfy similar formulas. They can all be
combined neatly in one vector formula:

A(x1, y1, z1) = μ0

4π

∫
J(x2, y2, z2) dv2

r12
(6.44)

In more compact notation we have

A = μ0

4π

∫
J dv

r
or dA = μ0

4π

J dv
r

. (6.45)

There is only one snag. We stipulated that div A = 0, in order to 
get Eq. (6.41). If the divergence of the A in Eq. (6.44) isn’t zero, then 
although this A will satisfy Eq. (6.41), it won’t satisfy Eq. (6.39). That is, 
it won’t satisfy Eq. (6.35). Fortunately, it turns out that the A in Eq. (6.44) 
does indeed satisfy div A = 0, provided that the current is steady (that 
is, ∇ · J = 0), which is the type of situation we are concerned with. You 
can prove this in Problem 6.6. The proof isn’t important for what we will 
be doing; we include it only for completeness.

Incidentally, the A for the example above could not have been 
obtained by Eq. (6.44). The integral would diverge owing to the infinite 
extent of the wire. This may remind you of the difficulty we encoun-
tered in Chapter 2 in setting up a scalar potential for the electric field 
of a charged wire. Indeed the two problems are very closely related, 
as we should expect from their identical geometry and the similarity 
of Eqs. (6.44) and (6.30). We found in Eq. (2.22) that a suitable scalar 
potential for the line charge problem is −(λ/2πε0) ln r + C, where C is 
an arbitrary constant. This assigns zero potential to some arbitrary point 
that is neither on the wire nor an infinite distance away. Both that scalar 
potential and the vector potential of Eq. (6.34) are singular at the origin 
and at infinity. However, see Problem 6.5 for a way to get around this 
issue. For an interesting discussion of the vector potential, including its 
interpretation as “electromagnetic momentum,” see Semon and Taylor 
(1996).
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11.3 The field of a current loop
A closed conducting loop, not necessarily circular, lies in the xy plane 
encircling the origin, as in Fig. 11.4(a). A steady current I flows around 
the loop. We are interested in the magnetic field this current creates – not 
near the loop, but at distant points like P1 in the figure. We assume that 
r1, the distance to P1, is much larger than any dimension of the loop. To 
simplify the diagram we have located P1 in the yz plane; it will turn out 
that this is no restriction. This is a good place to use the vector potential. 
We shall compute first the vector potential A at the location P1, that is, 
A(0, y1, z1). From this it will be obvious what the vector potential is at 
any other point (x, y, z) far from the loop. Then by taking the curl of A 
we can get the magnetic field B.

For a current confined to a wire, Eq. (6.46) gives A as

A(0, y1, z1) = μ0I
4π

∫
loop

dl2
r12

. (11.2)

When we used this equation in Section 6.4, we were concerned only with
the contribution of a small segment of the circuit; now we have to inte-
grate around the entire loop. Consider the variation in the denominator
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Figure 11.4.
(a) Calculation of the vector potential A at a
point far from the current loop. (b) Side view,
looking in along the x axis, showing that
r12 ≈ r1 − y2 sin θ if r1 � y2. (c) Top view, to
show that

∫
loop y2 dx2 is the area of the loop.
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r12 as we go around the loop. If P1 is far away, the first-order variation
in r12 depends only on the coordinate y2 of the segment dl2, and not on
x2. This is true because, from the Pythagorean theorem, the contribution
to r12 from x2 is of second order, whereas the side view in Fig. 11.4(b)
shows the first-order contribution from y1. Thus, neglecting quantities
proportional to (x2/r12)

2, we may treat r12 and r′12, which lie on top of
one another in the side view, as equal. And in general, to first order in the
ratio (loop dimension/distance to P1), we have

r12 ≈ r1 − y2 sin θ . (11.3)

Look now at the two elements of the path dl2 and dl′2 shown in
Fig. 11.4(a). For these the dy2 displacements are equal and opposite, and
as we have already pointed out, the r12 distances are equal to first order.
To this order then, the dy2 contributions to the line integral will cancel,
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and this will be true for the whole loop. Hence A at P1 will not have a
y component. Obviously it will not have a z component either, for dz2 is
always zero since the current path itself has nowhere a z component.

However, A at P1 will have an x component. The x component of the
vector potential comes from the dx2 part of the path integral:

A(0, y1, z1) = x̂
μ0I
4π

∫
dx2

r12
. (11.4)

Without spoiling our first-order approximation, we can turn Eq. (11.3)
into

1
r12

= 1
r1

(
1 − (y2/r1) sin θ

) ≈ 1
r1

(
1 + y2 sin θ

r1

)
, (11.5)

and using this for the integrand, we have

A(0, y1, z1) = x̂
μ0I

4πr1

∫ (
1 + y2 sin θ

r1

)
dx2. (11.6)

In the integration, r1 and θ are constants. Obviously
∫

dx2 around the
loop vanishes. Now

∫
y2 dx2 around the loop is just the area of the loop,

regardless of its shape; see Fig. 11.4(c). So we get finally

A(0, y1, z1) = x̂
μ0I sin θ

4πr2
1

× (area of loop). (11.7)

The intuitive reason why this result is nonzero is that the parts of the loop
that are closer to P1 give larger contributions to the integral, because they
have a smaller r12. There is partial, but not complete, cancelation from
corresponding pieces of the loop with the same x2 value but opposite dx2
values.

Here is a simple but crucial point: since the shape of the loop hasn’t
mattered, our restriction on P1 to the yz plane cannot make any essential
difference. Therefore we must have in Eq. (11.7) the general result we
seek, if only we state it generally: the vector potential of a current loop
of any shape, at a distance r from the loop that is much greater than the
size of the loop, is a vector perpendicular to the plane containing r and
the normal to the plane of the loop, of magnitude

A = μ0Ia sin θ

4πr2 , (11.8)

where a stands for the area of the loop.
This vector potential is symmetrical around the axis of the loop,

which implies that the field B will be symmetrical also. The explanation
is that we are considering regions so far from the loop that the details of
the shape of the loop have negligible influence. All loops with the same
current× area product produce the same far field. We call the product Ia
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the magnetic dipole moment of the current loop, and denote it by m. Its
units are amp-m2. The magnetic dipole moment is a vector, its direction
defined to be that of the normal to the loop, or that of the vector a, the
directed area of the region surrounded by the loop:

m = Ia (11.9)

As for sign, let us agree that the direction of m and the sense of positive
current flow in the loop are to be related by a right-hand-screw rule,
illustrated in Fig. 11.5. (The dipole moment of the loop in Fig. 11.4(a)

m = Ia

a

I

I

Figure 11.5.
By definition, the magnetic moment vector is
related to the current by a right-hand-screw rule
as shown here.

points downward, according to this rule.) The vector potential for the
field of a magnetic dipole m can now be written neatly with vectors:

A = μ0

4π

m × r̂
r2 (11.10)

where r̂ is a unit vector in the direction from the loop to the point for
which A is being computed. You can check that this agrees with our
convention about sign. Note that the direction of A will always be that of
the current in the nearest part of the loop.

Figure 11.6 shows a magnetic dipole located at the origin, with the

m
y

q

z

ry

Ax

Ay

A

z

x
I

x2 + y2

Figure 11.6.
A magnetic dipole located at the origin. At every
point far from the loop, A is a vector parallel to
the xy plane, tangent to a circle around the z
axis.

dipole moment vector m pointed in the positive z direction. To express
the vector potential at any point (x, y, z), we observe that r2 = x2+y2+z2,
and sin θ = √

x2 + y2/r. The magnitude A of the vector potential at that
point is given by

A = μ0

4π

m sin θ

r2 = μ0

4π

m
√

x2 + y2

r3 . (11.11)

Since A is tangent to a horizontal circle around the z axis, its compo-
nents are

Ax = A

(
−y√

x2 + y2

)
= −μ0

4π

my
r3 ,

Ay = A

(
x√

x2 + y2

)
= μ0

4π

mx
r3 ,

Az = 0. (11.12)

Let’s evaluate B for a point in the xz plane, by finding the compo-
nents of curl A and then (not before!) setting y = 0:

Bx = (∇ × A)x = ∂Az

∂y
− ∂Ay

∂z
=− μ0

4π

∂

∂z
mx

(x2 + y2 + z2)3/2 = μ0

4π

3mxz
r5 ,

By = (∇ × A)y = ∂Ax

∂z
− ∂Az

∂x
= μ0

4π

∂

∂z
−my

(x2 + y2 + z2)3/2 = μ0

4π

3myz
r5 ,
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Bz = (∇ × A)z = ∂Ay

∂x
− ∂Ax

∂y

= μ0

4π
m

[ −2x2 + y2 + z2

(x2 + y2 + z2)5/2 + x2 − 2y2 + z2

(x2 + y2 + z2)5/2

]
= μ0

4π

m(3z2 − r2)

r5 .

(11.13)

In the xz plane, we have y = 0, sin θ = x/r, and cos θ = z/r. The field
components at any point in that plane are thus given by

Bx = μ0

4π

3m sin θ cos θ

r3 ,

By = 0,

Bz = μ0

4π

m(3 cos2 θ − 1)

r3 . (11.14)
B

m

Figure 11.7.
Some magnetic field lines in the field of a
magnetic dipole, that is, a small loop of current.

Now turn back to Section 10.3, where in Eq. (10.17) we expressed
the components in the xz plane of the field E of an electric dipole p,
which was situated exactly like our magnetic dipole m. The expressions
are essentially identical, the only changes being p → m and 1/ε0 → μ0.
We have thus found that the magnetic field of a small current loop has,
at remote points, the same form as the electric field of two separated
charges. We already know what that field, the electric dipole field, looks
like. Figure 11.7 is an attempt to suggest the three-dimensional form of
the magnetic field B arising from our current loop with dipole moment
m. As in the case of the electric dipole, the field is described somewhat
more simply in spherical polar coordinates:

Br = μ0m
2πr3 cos θ , Bθ = μ0m

4πr3 sin θ , Bφ = 0. (11.15)

The magnetic field close to a current loop is entirely different from 
the electric field close to a pair of separated positive and negative charges, 
as the comparison in Fig. 11.8 shows. Note that between the charges the 
electric field points down, while inside the current ring the magnetic 
field points up, although the far fields are alike. This reflects the fact 
that our magnetic field satisfies ∇ · B = 0 everywhere, even inside the 
source. The magnetic field lines don’t end. By near and far we mean, 
of course, relative to the size of the current loop or the separation of 
the charges. If we imagine the current ring shrinking in size, the current 
meanwhile increasing so that the dipole moment m = Ia remains con-
stant, we approach the infinitesimal magnetic dipole, the counterpart of 
the infinitesimal electric dipole described in Chapter 10.
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E

B

(a)

Figure 11.8.
(a) The electric field of a pair of equal and
opposite charges. Far away it becomes the field
of an electric dipole. (b) The magnetic field of a
current ring. Far away it becomes the field of a
magnetic dipole.
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5.4 MAGNETIC VECTOR POTENTIAL

5.4.1 The Vector Potential

Just as ∇ × E = 0 permitted us to introduce a scalar potential (V ) in electrostatics,

E = −∇V,

so ∇ · B = 0 invites the introduction of a vector potential A in magnetostatics:

B = ∇ × A. (5.61)

The former is authorized by Theorem 1 (of Sect. 1.6.2), the latter by Theorem 2
(The proof of Theorem 2 is developed in Prob. 5.31). The potential formulation
automatically takes care of ∇ · B = 0 (since the divergence of a curl is always
zero); there remains Ampère’s law:

∇ × B = ∇ × (∇ × A) = ∇(∇ · A) − ∇2A = μ0J. (5.62)

Now, the electric potential had a built-in ambiguity: you can add to V any
function whose gradient is zero (which is to say, any constant), without altering
the physical quantity E. Likewise, you can add to A any function whose curl
vanishes (which is to say, the gradient of any scalar), with no effect on B. We can
exploit this freedom to eliminate the divergence of A:

∇ · A = 0. (5.63)

To prove that this is always possible, suppose that our original potential, A0,
is not divergenceless. If we add to it the gradient of λ (A = A0 + ∇λ), the new
divergence is

∇ · A = ∇ · A0 + ∇2λ.
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We can accommodate Eq. 5.63, then, if a function λ can be found that satisfies

∇2λ = −∇ · A0.

But this is mathematically identical to Poisson’s equation (2.24),

∇2V = − ρ

ε0
,

with ∇ · A0 in place of ρ/ε0 as the “source.” And we know how to solve Poisson’s
equation—that’s what electrostatics is all about (“given the charge distribution,
find the potential”). In particular, if ρ goes to zero at infinity, the solution is
Eq. 2.29:

V = 1

4πε0

∫
ρ

r dτ ′,

and by the same token, if ∇ · A0 goes to zero at infinity, then

λ = 1

4π

∫ ∇ · A0

r dτ ′.

If ∇ · A0 does not go to zero at infinity, we’ll have to use other means to dis-
cover the appropriate λ, just as we get the electric potential by other means when
the charge distribution extends to infinity. But the essential point remains: It is
always possible to make the vector potential divergenceless. To put it the other
way around: the definition B = ∇ × A specifies the curl of A, but it doesn’t say
anything about the divergence—we are at liberty to pick that as we see fit, and
zero is ordinarily the simplest choice.

With this condition on A, Ampère’s law (Eq. 5.62) becomes

∇2A = −μ0J. (5.64)

This again is nothing but Poisson’s equation—or rather, it is three Poisson’s equa-
tions, one for each Cartesian19 component. Assuming J goes to zero at infinity,
we can read off the solution:

A(r) = μ0

4π

∫
J(r′)
r dτ ′. (5.65)

19In Cartesian coordinates, ∇2A = (∇2 Ax )x̂ + (∇2 Ay)ŷ + (∇2 Az)ẑ, so Eq. 5.64 reduces to ∇2 Ax =
−μ0 Jx , ∇2 Ay = −μ0 Jy , and ∇2 Az = −μ0 Jz . In curvilinear coordinates the unit vectors them-
selves are functions of position, and must be differentiated, so it is not the case, for example, that
∇2 Ar = −μ0 Jr . Remember that even if you plan to evaluate integrals such as 5.65 using curvilinear
coordinates, you must first express J in terms of its Cartesian components (see Sect. 1.4.1).
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For line and surface currents,

A = μ0

4π

∫
I
r dl ′ = μ0 I

4π

∫
1

r dl′; A = μ0

4π

∫
K
r da′. (5.66)

(If the current does not go to zero at infinity, we have to find other ways to get
A; some of these are explored in Ex. 5.12 and in the problems at the end of the
section.)

It must be said that A is not as useful as V . For one thing, it’s still a vector,
and although Eqs. 5.65 and 5.66 are somewhat easier to work with than the Biot-
Savart law, you still have to fuss with components. It would be nice if we could
get away with a scalar potential

B = −∇U, (5.67)

but this is incompatible with Ampère’s law, since the curl of a gradient is always
zero. (A magnetostatic scalar potential can be used, if you stick scrupulously
to simply-connected, current-free regions, but as a theoretical tool, it is of limited
interest. See Prob. 5.29.) Moreover, since magnetic forces do no work, A does
not admit a simple physical interpretation in terms of potential energy per unit
charge. (In some contexts it can be interpreted as momentum per unit charge.20)
Nevertheless, the vector potential has substantial theoretical importance, as we
shall see in Chapter 10.

Example 5.11. A spherical shell of radius R, carrying a uniform surface charge
σ , is set spinning at angular velocity ωωω. Find the vector potential it produces at
point r (Fig. 5.45).

Solution
It might seem natural to set the polar axis along ωωω, but in fact the integration
is easier if we let r lie on the z axis, so that ωωω is tilted at an angle ψ . We may
as well orient the x axis so that ωωω lies in the xz plane, as shown in Fig. 5.46.
According to Eq. 5.66,

R

ψ

ω

r

FIGURE 5.45

r′

r r

θ′ψ

ω

x

y

z

da′

φ′

FIGURE 5.46

20M. D. Semon and J. R. Taylor, Am. J. Phys. 64, 1361 (1996).
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A(r) = μ0

4π

∫
K(r′)
r da′,

where K = σv, r = √
R2 + r2 − 2Rr cos θ ′, and da′ = R2 sin θ ′ dθ ′ dφ′. Now

the velocity of a point r′ in a rotating rigid body is given by ωωω × r′; in this case,

v = ωωω × r′ =
∣∣∣∣∣∣

x̂ ŷ ẑ
ω sin ψ 0 ω cos ψ

R sin θ ′ cos φ′ R sin θ ′ sin φ′ R cos θ ′

∣∣∣∣∣∣
= Rω

[−(
cos ψ sin θ ′ sin φ′) x̂+(cos ψ sin θ ′ cos φ′− sin ψ cos θ ′) ŷ

+ (sin ψ sin θ ′ sin φ′) ẑ
]
.

Notice that each of these terms, save one, involves either sin φ′ or cos φ′. Since∫ 2π

0
sin φ′ dφ′ =

∫ 2π

0
cos φ′ dφ′ = 0,

such terms contribute nothing. There remains

A(r) = −μ0 R3σω sin ψ

2

(∫ π

0

cos θ ′ sin θ ′
√

R2 + r2 − 2Rr cos θ ′ dθ ′
)

ŷ.

Letting u ≡ cos θ ′, the integral becomes

∫ +1

−1

u√
R2 + r2 − 2Rru

du = − (R2 + r2 + Rru)

3R2r2

√
R2 + r2 − 2Rru

∣∣∣∣
+1

−1

= − 1

3R2r2

[
(R2 + r2 + Rr)|R − r |
−(R2 + r2 − Rr)(R + r)

]
.

If the point r lies inside the sphere, then R > r , and this expression reduces to
(2r/3R2); if r lies outside the sphere, so that R < r , it reduces to (2R/3r2). Not-
ing that (ωωω × r) = −ωr sin ψ ŷ, we have, finally,

A(r) =

⎧⎪⎨
⎪⎩

μ0 Rσ

3
(ωωω × r), for points inside the sphere,

μ0 R4σ

3r3
(ωωω × r), for points outside the sphere.

(5.68)

Having evaluated the integral, I revert to the “natural” coordinates of Fig. 5.45,
in which ωωω coincides with the z axis and the point r is at (r, θ, φ):

A(r, θ, φ) =

⎧⎪⎨
⎪⎩

μ0 Rωσ

3
r sin θ φ̂, (r ≤ R),

μ0 R4ωσ

3

sin θ

r2
φ̂, (r ≥ R).

(5.69)
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Curiously, the field inside this spherical shell is uniform:

B = ∇ × A = 2μ0 Rωσ

3
(cos θ r̂ − sin θ θ̂) = 2

3
μ0σ Rω ẑ = 2

3
μ0σ Rωωω. (5.70)

Example 5.12. Find the vector potential of an infinite solenoid with n turns per
unit length, radius R, and current I .

Solution
This time we cannot use Eq. 5.66, since the current itself extends to infinity. But
here’s a cute method that does the job. Notice that∮

A · dl =
∫

(∇ × A) · da =
∫

B · da = �, (5.71)

where � is the flux of B through the loop in question. This is reminiscent of
Ampère’s law in integral form (Eq. 5.57),∮

B · dl = μ0 Ienc.

In fact, it’s the same equation, with B → A and μ0 Ienc → �. If symmetry per-
mits, we can determine A from � in the same way we got B from Ienc, in
Sect. 5.3.3. The present problem (with a uniform longitudinal magnetic field
μ0nI inside the solenoid and no field outside) is analogous to the Ampère’s
law problem of a fat wire carrying a uniformly distributed current. The vector
potential is “circumferential” (it mimics the magnetic field in the analog); using a
circular “Amperian loop” at radius s inside the solenoid, we have∮

A · dl = A(2πs) =
∫

B · da = μ0nI (πs2),

so

A = μ0nI

2
s φ̂, for s ≤ R. (5.72)

For an Amperian loop outside the solenoid, the flux is∫
B · da = μ0nI (π R2),

since the field only extends out to R. Thus

A = μ0nI

2

R2

s
φ̂, for s ≥ R. (5.73)

If you have any doubts about this answer, check it: Does ∇ × A = B? Does
∇ · A = 0? If so, we’re done.
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Typically, the direction of A mimics the direction of the current. For instance,
both were azimuthal in Exs. 5.11 and 5.12. Indeed, if all the current flows in
one direction, then Eq. 5.65 suggests that A must point that way too. Thus the
potential of a finite segment of straight wire (Prob. 5.23) is in the direction of the
current. Of course, if the current extends to infinity you can’t use Eq. 5.65 in the
first place (see Probs. 5.26 and 5.27). Moreover, you can always add an arbitrary
constant vector to A—this is analogous to changing the reference point for V , and
it won’t affect the divergence or curl of A, which is all that matters (in Eq. 5.65
we have chosen the constant so that A goes to zero at infinity). In principle you
could even use a vector potential that is not divergenceless, in which case all bets
are off. Despite these caveats, the essential point remains: Ordinarily the direction
of A will match the direction of the current.

Problem 5.23 Find the magnetic vector potential of a finite segment of straight wire
carrying a current I . [Put the wire on the z axis, from z1 to z2, and use Eq. 5.66.]
Check that your answer is consistent with Eq. 5.37.

Problem 5.24 What current density would produce the vector potential, A = k φ̂

(where k is a constant), in cylindrical coordinates?

Problem 5.25 If B is uniform, show that A(r) = − 1
2 (r × B) works. That is, check

that ∇ · A = 0 and ∇ × A = B. Is this result unique, or are there other functions
with the same divergence and curl?

Problem 5.26

(a) By whatever means you can think of (short of looking it up), find the vector
potential a distance s from an infinite straight wire carrying a current I . Check
that ∇ · A = 0 and ∇ × A = B.

(b) Find the magnetic potential inside the wire, if it has radius R and the current is
uniformly distributed.

Problem 5.27 Find the vector potential above and below the plane surface current
in Ex. 5.8.

Problem 5.28

(a) Check that Eq. 5.65 is consistent with Eq. 5.63, by applying the divergence.

(b) Check that Eq. 5.65 is consistent with Eq. 5.47, by applying the curl.

(c) Check that Eq. 5.65 is consistent with Eq. 5.64, by applying the Laplacian.

Problem 5.29 Suppose you want to define a magnetic scalar potential U (Eq. 5.67)
in the vicinity of a current-carrying wire. First of all, you must stay away from the
wire itself (there ∇ × B �= 0); but that’s not enough. Show, by applying Ampère’s
law to a path that starts at a and circles the wire, returning to b (Fig. 5.47), that the
scalar potential cannot be single-valued (that is, U (a) �= U (b), even if they repre-
sent the same physical point). As an example, find the scalar potential for an infinite
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I

Amperian loop

a
b

FIGURE 5.47

straight wire. (To avoid a multivalued potential, you must restrict yourself to simply-
connected regions that remain on one side or the other of every wire, never allowing
you to go all the way around.)

Problem 5.30 Use the results of Ex. 5.11 to find the magnetic field inside a solid
sphere, of uniform charge density ρ and radius R, that is rotating at a constant
angular velocity ωωω.

Problem 5.31

(a) Complete the proof of Theorem 2, Sect. 1.6.2. That is, show that any diver-
genceless vector field F can be written as the curl of a vector potential A. What
you have to do is find Ax , Ay , and Az such that (i) ∂ Az/∂y − ∂ Ay/∂z = Fx ;
(ii) ∂ Ax/∂z − ∂ Az/∂x = Fy ; and (iii) ∂ Ay/∂x − ∂ Ax/∂y = Fz . Here’s one
way to do it: Pick Ax = 0, and solve (ii) and (iii) for Ay and Az . Note that
the “constants of integration” are themselves functions of y and z—they’re
constant only with respect to x . Now plug these expressions into (i), and use
the fact that ∇ · F = 0 to obtain

Ay =
∫ x

0
Fz(x ′, y, z) dx ′; Az =

∫ y

0
Fx (0, y′, z) dy′ −

∫ x

0
Fy(x ′, y, z) dx ′.

(b) By direct differentiation, check that the A you obtained in part (a) satisfies
∇ × A = F. Is A divergenceless? [This was a very asymmetrical construc-
tion, and it would be surprising if it were—although we know that there exists
a vector whose curl is F and whose divergence is zero.]

(c) As an example, let F = y x̂ + z ŷ + x ẑ. Calculate A, and confirm that
∇ × A = F. (For further discussion, see Prob. 5.53.)

5.4.2 Boundary Conditions

In Chapter 2, I drew a triangular diagram to summarize the relations among the
three fundamental quantities of electrostatics: the charge density ρ, the electric
field E, and the potential V . A similar figure can be constructed for magnetostatics
(Fig. 5.48), relating the current density J, the field B, and the potential A. There is
one “missing link” in the diagram: the equation for A in terms of B. It’s unlikely
you would ever need such a formula, but in case you are interested, see Probs. 5.52
and 5.53.
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Just as the electric field suffers a discontinuity at a surface charge, so the mag-
netic field is discontinuous at a surface current. Only this time it is the tangential
component that changes. For if we apply Eq. 5.50, in integral form,

∮
B · da = 0,

to a wafer-thin pillbox straddling the surface (Fig. 5.49), we get

B⊥
above = B⊥

below. (5.74)

As for the tangential components, an Amperian loop running perpendicular to the
current (Fig. 5.50) yields

∮
B · dl =

(
B‖

above − B‖
below

)
l = μ0 Ienc = μ0 Kl,

or

B‖
above − B‖

below = μ0 K . (5.75)

B⊥
above

B⊥
below

K

FIGURE 5.49
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B�
above

B�
below

K

l

FIGURE 5.50

Thus the component of B that is parallel to the surface but perpendicular to the
current is discontinuous in the amount μ0 K . A similar Amperian loop running
parallel to the current reveals that the parallel component is continuous. These
results can be summarized in a single formula:

Babove − Bbelow = μ0(K × n̂), (5.76)

where n̂ is a unit vector perpendicular to the surface, pointing “upward.”
Like the scalar potential in electrostatics, the vector potential is continuous

across any boundary:

Aabove = Abelow, (5.77)

for ∇ · A = 0 guarantees21 that the normal component is continuous; and
∇ × A = B, in the form

∮
A · dl =

∫
B · da = �,

means that the tangential components are continuous (the flux through an Am-
perian loop of vanishing thickness is zero). But the derivative of A inherits the
discontinuity of B:

∂Aabove

∂n
− ∂Abelow

∂n
= −μ0K. (5.78)

Problem 5.32

(a) Check Eq. 5.76 for the configuration in Ex. 5.9.

(b) Check Eqs. 5.77 and 5.78 for the configuration in Ex. 5.11.

Problem 5.33 Prove Eq. 5.78, using Eqs. 5.63, 5.76, and 5.77. [Suggestion: I’d set
up Cartesian coordinates at the surface, with z perpendicular to the surface and x
parallel to the current.]

21Note that Eqs. 5.77 and 5.78 presuppose that A is divergenceless.
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5.4.3 Multipole Expansion of the Vector Potential

If you want an approximate formula for the vector potential of a localized current
distribution, valid at distant points, a multipole expansion is in order. Remember:
the idea of a multipole expansion is to write the potential in the form of a power
series in 1/r , where r is the distance to the point in question (Fig. 5.51); if r is
sufficiently large, the series will be dominated by the lowest nonvanishing contri-
bution, and the higher terms can be ignored. As we found in Sect. 3.4.1 (Eq. 3.94),

1

r = 1√
r2 + (r ′)2 − 2rr ′ cos α

= 1

r

∞∑
n=0

(
r ′

r

)n

Pn(cos α), (5.79)

where α is the angle between r and r′. Accordingly, the vector potential of a
current loop can be written

A(r) = μ0 I

4π

∮
1

r dl′ = μ0 I

4π

∞∑
n=0

1

rn+1

∮
(r ′)n Pn(cos α) dl′, (5.80)

or, more explicitly:

A(r) = μ0 I

4π

[
1

r

∮
dl′ + 1

r2

∮
r ′ cos α dl′

+ 1

r3

∮
(r ′)2

(
3

2
cos2 α − 1

2

)
dl′ + · · ·

]
.

(5.81)

As in the multipole expansion of V , we call the first term (which goes like 1/r ) the
monopole term, the second (which goes like 1/r2) dipole, the third quadrupole,
and so on.

dr′  = dl′

I

rα

r

r′

O

FIGURE 5.51
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Now, the magnetic monopole term is always zero, for the integral is just the
total vector displacement around a closed loop:∮

dl′ = 0. (5.82)

This reflects the fact that there are no magnetic monopoles in nature (an assump-
tion contained in Maxwell’s equation ∇ · B = 0, on which the entire theory of
vector potential is predicated).

In the absence of any monopole contribution, the dominant term is the dipole
(except in the rare case where it, too, vanishes):

Adip(r) = μ0 I

4πr2

∮
r ′ cos α dl′ = μ0 I

4πr2

∮
(r̂ · r′) dl′. (5.83)

This integral can be rewritten in a more illuminating way if we invoke Eq. 1.108,
with c = r̂: ∮

(r̂ · r′) dl′ = −r̂ ×
∫

da′. (5.84)

Then

Adip(r) = μ0

4π

m × r̂
r2

, (5.85)

where m is the magnetic dipole moment:

m ≡ I
∫

da = I a. (5.86)

Here a is the “vector area” of the loop (Prob. 1.62); if the loop is flat, a is the
ordinary area enclosed, with the direction assigned by the usual right-hand rule
(fingers in the direction of the current).

Example 5.13. Find the magnetic dipole moment of the “bookend-shaped” loop
shown in Fig. 5.52. All sides have length w, and it carries a current I .

I

z

y

x

w

w

w

FIGURE 5.52
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Solution
This wire could be considered the superposition of two plane square loops
(Fig. 5.53). The “extra” sides (AB) cancel when the two are put together, since
the currents flow in opposite directions. The net magnetic dipole moment is

m = Iw2 ŷ + Iw2 ẑ;
its magnitude is

√
2Iw2, and it points along the 45◦ line z = y.

w

w

w w

A

A
I I

+
B

B

FIGURE 5.53

It is clear from Eq. 5.86 that the magnetic dipole moment is independent of
the choice of origin. You may remember that the electric dipole moment is in-
dependent of the origin only when the total charge vanishes (Sect. 3.4.3). Since
the magnetic monopole moment is always zero, it is not really surprising that the
magnetic dipole moment is always independent of origin.

Although the dipole term dominates the multipole expansion (unless m = 0)
and thus offers a good approximation to the true potential, it is not ordinarily the
exact potential; there will be quadrupole, octopole, and higher contributions. You
might ask, is it possible to devise a current distribution whose potential is “pure”
dipole—for which Eq. 5.85 is exact? Well, yes and no: like the electrical analog,
it can be done, but the model is a bit contrived. To begin with, you must take an
infinitesimally small loop at the origin, but then, in order to keep the dipole mo-
ment finite, you have to crank the current up to infinity, with the product m = I a
held fixed. In practice, the dipole potential is a suitable approximation whenever
the distance r greatly exceeds the size of the loop.

The magnetic field of a (perfect) dipole is easiest to calculate if we put m at
the origin and let it point in the z-direction (Fig. 5.54). According to Eq. 5.85, the
potential at point (r, θ, φ) is

r

m

θ

x

y

z

φ

FIGURE 5.54
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y

z

y

z

(a) Field of a "pure" dipole (b) Field of a "physical" dipole

FIGURE 5.55

Adip(r) = μ0

4π

m sin θ

r2
φ̂, (5.87)

and hence

Bdip(r) = ∇ × A = μ0m

4πr3
(2 cos θ r̂ + sin θ θ̂). (5.88)

Surprisingly, this is identical in structure to the field of an electric dipole
(Eq. 3.103)! (Up close, however, the field of a physical magnetic dipole—a
small current loop—looks quite different from the field of a physical electric
dipole—plus and minus charges a short distance apart. Compare Fig. 5.55 with
Fig. 3.37.)

Problem 5.34 Show that the magnetic field of a dipole can be written in coordinate-•
free form:

Bdip(r) = μ0

4π

1

r 3

[
3(m · r̂)r̂ − m

]
. (5.89)

Problem 5.35 A circular loop of wire, with radius R, lies in the xy plane (centered
at the origin) and carries a current I running counterclockwise as viewed from the
positive z axis.

(a) What is its magnetic dipole moment?

(b) What is the (approximate) magnetic field at points far from the origin?

(c) Show that, for points on the z axis, your answer is consistent with the exact field
(Ex. 5.6), when z � R.

Problem 5.36 Find the exact magnetic field a distance z above the center of a square
loop of side w, carrying a current I . Verify that it reduces to the field of a dipole,
with the appropriate dipole moment, when z � w.
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Problem 5.37

(a) A phonograph record of radius R, carrying a uniform surface charge σ , is rotat-
ing at constant angular velocity ω. Find its magnetic dipole moment.

(b) Find the magnetic dipole moment of the spinning spherical shell in Ex. 5.11.
Show that for points r > R the potential is that of a perfect dipole.

Problem 5.38 I worked out the multipole expansion for the vector potential of a
line current because that’s the most common type, and in some respects the easiest
to handle. For a volume current J:

(a) Write down the multipole expansion, analogous to Eq. 5.80.

(b) Write down the monopole potential, and prove that it vanishes.

(c) Using Eqs. 1.107 and 5.86, show that the dipole moment can be written

m = 1

2

∫
(r × J) dτ. (5.90)

More Problems on Chapter 5

Problem 5.39 Analyze the motion of a particle (charge q , mass m) in the magnetic
field of a long straight wire carrying a steady current I .

(a) Is its kinetic energy conserved?

(b) Find the force on the particle, in cylindrical coordinates, with I along the z axis.

(c) Obtain the equations of motion.

(d) Suppose ż is constant. Describe the motion.

Problem 5.40 It may have occurred to you that since parallel currents attract, the
current within a single wire should contract into a tiny concentrated stream along
the axis. Yet in practice the current typically distributes itself quite uniformly over
the wire. How do you account for this? If the positive charges (density ρ+) are
“nailed down,” and the negative charges (density ρ−) move at speed v (and none
of these depends on the distance from the axis), show that ρ− = −ρ+γ 2, where
γ ≡ 1/

√
1 − (v/c)2 and c2 = 1/μ0ε0. If the wire as a whole is neutral, where is the

compensating charge located?22 [Notice that for typical velocities (see Prob. 5.20),
the two charge densities are essentially unchanged by the current (since γ ≈ 1). In
plasmas, however, where the positive charges are also free to move, this so-called
pinch effect can be very significant.]

Problem 5.41 A current I flows to the right through a rectangular bar of conducting
material, in the presence of a uniform magnetic field B pointing out of the page
(Fig. 5.56).

(a) If the moving charges are positive, in which direction are they deflected by
the magnetic field? This deflection results in an accumulation of charge on the

22For further discussion, see D. C. Gabuzda, Am. J. Phys. 61, 360 (1993).
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upper and lower surfaces of the bar, which in turn produces an electric force to
counteract the magnetic one. Equilibrium occurs when the two exactly cancel.
(This phenomenon is known as the Hall effect.)

(b) Find the resulting potential difference (the Hall voltage) between the top and
bottom of the bar, in terms of B, v (the speed of the charges), and the relevant
dimensions of the bar.23

(c) How would your analysis change if the moving charges were negative? [The
Hall effect is the classic way of determining the sign of the mobile charge
carriers in a material.]

B

I I

l

t

w

FIGURE 5.56

w

I

FIGURE 5.57

Problem 5.42 A plane wire loop of irregular shape is situated so that part of it is
in a uniform magnetic field B (in Fig. 5.57 the field occupies the shaded region,
and points perpendicular to the plane of the loop). The loop carries a current I .
Show that the net magnetic force on the loop is F = I Bw, where w is the chord
subtended. Generalize this result to the case where the magnetic field region itself
has an irregular shape. What is the direction of the force?

R

Field region

Particle trajectory

FIGURE 5.58

Problem 5.43 A circularly symmetrical magnetic field (B depends only on the dis-
tance from the axis), pointing perpendicular to the page, occupies the shaded region
in Fig. 5.58. If the total flux (

∫
B · da) is zero, show that a charged particle that

starts out at the center will emerge from the field region on a radial path (provided

23The potential within the bar makes an interesting boundary-value problem. See M. J. Moelter,
J. Evans, G. Elliot, and M. Jackson, Am. J. Phys. 66, 668 (1998).
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it escapes at all). On the reverse trajectory, a particle fired at the center from outside
will hit its target (if it has sufficient energy), though it may follow a weird route
getting there. [Hint: Calculate the total angular momentum acquired by the particle,
using the Lorentz force law.]

Problem 5.44 Calculate the magnetic force of attraction between the northern and
southern hemispheres of a spinning charged spherical shell (Ex. 5.11). [Answer:
(π/4)μ0σ

2ω2 R4.]

Problem 5.45 Consider the motion of a particle with mass m and electric charge qe!
in the field of a (hypothetical) stationary magnetic monopole qm at the origin:

B = μ0

4π

qm

r 2
r̂.

(a) Find the acceleration of qe, expressing your answer in terms of q, qm , m, r (the
position of the particle), and v (its velocity).

(b) Show that the speed v = |v| is a constant of the motion.

(c) Show that the vector quantity

Q ≡ m(r × v) − μ0qeqm

4π
r̂

is a constant of the motion. [Hint: differentiate it with respect to time, and
prove—using the equation of motion from (a)—that the derivative is zero.]

(d) Choosing spherical coordinates (r, θ, φ), with the polar (z) axis along Q,

(i) calculate Q · φ̂, and show that θ is a constant of the motion (so qe moves
on the surface of a cone—something Poincaré first discovered in 1896)24;

(ii) calculate Q · r̂, and show that the magnitude of Q is

Q = μ0

4π

∣∣∣ qeqm

cos θ

∣∣∣ ;

(iii) calculate Q · θ̂ , show that

dφ

dt
= k

r 2
,

and determine the constant k.

(e) By expressing v2 in spherical coordinates, obtain the equation for the trajectory,
in the form

dr

dφ
= f (r)

(that is: determine the function f (r)).

(f) Solve this equation for r(φ).

24In point of fact, the charge follows a geodesic on the cone. The original paper is H. Poincaré,
Comptes rendus de l’Academie des Sciences 123, 530 (1896); for a more modern treatment, see B.
Rossi and S. Olbert, Introduction to the Physics of Space (New York: McGraw-Hill, 1970).



5.4 Magnetic Vector Potential 259

Problem 5.46 Use the Biot-Savart law (most conveniently in the form of Eq. 5.42!
appropriate to surface currents) to find the field inside and outside an infinitely long
solenoid of radius R, with n turns per unit length, carrying a steady current I .

R

I

R

I

dz = 0

z

FIGURE 5.59

Problem 5.47 The magnetic field on the axis of a circular current loop (Eq. 5.41)
is far from uniform (it falls off sharply with increasing z). You can produce a more
nearly uniform field by using two such loops a distance d apart (Fig. 5.59).

(a) Find the field (B) as a function of z, and show that ∂ B/∂z is zero at the point
midway between them (z = 0).

(b) If you pick d just right, the second derivative of B will also vanish at the mid-
point. This arrangement is known as a Helmholtz coil; it’s a convenient way
of producing relatively uniform fields in the laboratory. Determine d such that
∂2 B/∂z2 = 0 at the midpoint, and find the resulting magnetic field at the center.
[Answer: 8μ0 I/5

√
5R]

Problem 5.48 Use Eq. 5.41 to obtain the magnetic field on the axis of the rotating
disk in Prob. 5.37(a). Show that the dipole field (Eq. 5.88), with the dipole moment
you found in Prob. 5.37, is a good approximation if z � R.

Problem 5.49 Suppose you wanted to find the field of a circular loop (Ex. 5.6) at
a point r that is not directly above the center (Fig. 5.60). You might as well choose
your axes so that r lies in the yz plane at (0, y, z). The source point is (R cos φ′,
R sin φ′, 0), and φ′ runs from 0 to 2π . Set up the integrals25 from which you could
calculate Bx , By , and Bz , and evaluate Bx explicitly.

Problem 5.50 Magnetostatics treats the “source current” (the one that sets up the
field) and the “recipient current” (the one that experiences the force) so asymmet-
rically that it is by no means obvious that the magnetic force between two current
loops is consistent with Newton’s third law. Show, starting with the Biot-Savart law
(Eq. 5.34) and the Lorentz force law (Eq. 5.16), that the force on loop 2 due to
loop 1 (Fig. 5.61) can be written as

F2 = − μ0

4π
I1 I2

∮ ∮ r̂
r2

dl1 · dl2. (5.91)

25These are elliptic integrals—see R. H. Good, Eur. J. Phys. 22, 119 (2001).
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FIGURE 5.61

In this form, it is clear that F2 = −F1, since r̂ changes direction when the roles of
1 and 2 are interchanged. (If you seem to be getting an “extra” term, it will help to
note that dl2 · r̂ = dr.)

Problem 5.51 Consider a plane loop of wire that carries a steady current I ; we
want to calculate the magnetic field at a point in the plane. We might as well take
that point to be the origin (it could be inside or outside the loop). The shape of the
wire is given, in polar coordinates, by a specified function r(θ) (Fig. 5.62).

y

r
r̂

r̂

I

xθ

φ
φ

dθ

dl
dl

FIGURE 5.62

(a) Show that the magnitude of the field is26

B = μ0 I

4π

∮
dθ

r
. (5.92)

[Hint: Start with the Biot-Savart law; note that r = −r, and dl × r̂ points per-
pendicular to the plane; show that |dl × r̂| = dl sin φ = r dθ .]

(b) Test this formula by calculating the field at the center of a circular loop.

(c) The “lituus spiral” is defined by

r(θ) = a√
θ

, (0 < θ ≤ 2π)

(for some constant a). Sketch this figure, and complete the loop with a straight
segment along the x axis. What is the magnetic field at the origin?

26J. A. Miranda, Am. J. Phys. 68, 254 (2000).
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(d) For a conic section with focus at the origin,

r(θ) = p

1 + e cos θ
,

where p is the semilatus rectum (the y intercept) and e is the eccentricity (e = 0
for a circle, 0 < e < 1 for an ellipse, e = 1 for a parabola). Show that the field is

B = μ0 I

2p

regardless of the eccentricity.27

Problem 5.52

(a) One way to fill in the “missing link” in Fig. 5.48 is to exploit the analogy be-
tween the defining equations for A (viz. ∇ · A = 0, ∇ × A = B) and Maxwell’s
equations for B (viz. ∇ · B = 0, ∇ × B = μ0J). Evidently A depends on B in
exactly the same way that B depends on μ0J (to wit: the Biot-Savart law). Use
this observation to write down the formula for A in terms of B.

(b) The electrical analog to your result in (a) is

V (r) = − 1

4π

∫
E(r′) · r̂
r2

dτ ′.

Derive it, by exploiting the appropriate analogy.

Problem 5.53 Another way to fill in the “missing link” in Fig. 5.48 is to look for a!
magnetostatic analog to Eq. 2.21. The obvious candidate would be

A(r) =
∫ r

O
(B × dl).

(a) Test this formula for the simplest possible case—uniform B (use the origin as
your reference point). Is the result consistent with Prob. 5.25? You could cure
this problem by throwing in a factor of 1

2 , but the flaw in this equation runs
deeper.

(b) Show that
∫
(B × dl) is not independent of path, by calculating

∮
(B × dl)

around the rectangular loop shown in Fig. 5.63.

a b

w

I

FIGURE 5.63

27C. Christodoulides, Am. J. Phys. 77, 1195 (2009).
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As far as I know,28 the best one can do along these lines is the pair of equations

(i) V (r) = −r · ∫ 1
0 E(λr) dλ,

(ii) A(r) = −r × ∫ 1
0 λB(λr) dλ.

[Equation (i) amounts to selecting a radial path for the integral in Eq. 2.21;
equation (ii) constitutes a more “symmetrical” solution to Prob. 5.31.]

(c) Use (ii) to find the vector potential for uniform B.

(d) Use (ii) to find the vector potential of an infinite straight wire carrying a steady
current I . Does (ii) automatically satisfy ∇ · A = 0? [Answer: (μ0 I/2πs)
(z ŝ − s ẑ)]

Problem 5.54

(a) Construct the scalar potential U (r) for a “pure” magnetic dipole m.

(b) Construct a scalar potential for the spinning spherical shell (Ex. 5.11). [Hint:
for r > R this is a pure dipole field, as you can see by comparing Eqs. 5.69 and
5.87.]

(c) Try doing the same for the interior of a solid spinning sphere. [Hint: If you
solved Prob. 5.30, you already know the field; set it equal to −∇U , and solve
for U . What’s the trouble?]

Problem 5.55 Just as ∇ · B = 0 allows us to express B as the curl of a vector poten-
tial (B = ∇ × A), so ∇ · A = 0 permits us to write A itself as the curl of a “higher”
potential: A = ∇ × W. (And this hierarchy can be extended ad infinitum.)

(a) Find the general formula for W (as an integral over B), which holds when
B → 0 at ∞.

(b) Determine W for the case of a uniform magnetic field B. [Hint: see Prob. 5.25.]

(c) Find W inside and outside an infinite solenoid. [Hint: see Ex. 5.12.]

Problem 5.56 Prove the following uniqueness theorem: If the current density J is
specified throughout a volume V , and either the potential A or the magnetic field B
is specified on the surface S bounding V , then the magnetic field itself is uniquely
determined throughout V . [Hint: First use the divergence theorem to show that∫

{(∇ × U) · (∇ × V) − U · [∇ × (∇ × V)]} dτ =
∮

[U × (∇ × V)] · da,

for arbitrary vector functions U and V.]

Problem 5.57 A magnetic dipole m = −m0 ẑ is situated at the origin, in an other-
wise uniform magnetic field B = B0 ẑ. Show that there exists a spherical surface,
centered at the origin, through which no magnetic field lines pass. Find the radius
of this sphere, and sketch the field lines, inside and out.

28R. L. Bishop and S. I. Goldberg, Tensor Analysis on Manifolds, Section 4.5 (New York: Macmillan,
1968).
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Problem 5.58 A thin uniform donut, carrying charge Q and mass M , rotates about
its axis as shown in Fig. 5.64.

(a) Find the ratio of its magnetic dipole moment to its angular momentum. This is
called the gyromagnetic ratio (or magnetomechanical ratio).

(b) What is the gyromagnetic ratio for a uniform spinning sphere? [This requires
no new calculation; simply decompose the sphere into infinitesimal rings, and
apply the result of part (a).]

(c) According to quantum mechanics, the angular momentum of a spinning elec-
tron is 1

2 h̄, where h̄ is Planck’s constant. What, then, is the electron’s mag-
netic dipole moment, in A · m2? [This semiclassical value is actually off by a
factor of almost exactly 2. Dirac’s relativistic electron theory got the 2 right,
and Feynman, Schwinger, and Tomonaga later calculated tiny further correc-
tions. The determination of the electron’s magnetic dipole moment remains the
finest achievement of quantum electrodynamics, and exhibits perhaps the most
stunningly precise agreement between theory and experiment in all of physics.
Incidentally, the quantity (eh̄/2m), where e is the charge of the electron and m
is its mass, is called the Bohr magneton.]

z

FIGURE 5.64

Problem 5.59•
(a) Prove that the average magnetic field, over a sphere of radius R, due to steady

currents inside the sphere, is

Bave = μ0

4π

2m
R3

, (5.93)

where m is the total dipole moment of the sphere. Contrast the electrostatic
result, Eq. 3.105. [This is tough, so I’ll give you a start:

Bave = 1
4
3 π R3

∫
B dτ.

Write B as (∇ × A), and apply Prob. 1.61(b). Now put in Eq. 5.65, and do the
surface integral first, showing that∫

1

r da = 4

3
πr′

(see Fig. 5.65). Use Eq. 5.90, if you like.]

(b) Show that the average magnetic field due to steady currents outside the sphere
is the same as the field they produce at the center.
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r
da

dτr′

FIGURE 5.65

Problem 5.60 A uniformly charged solid sphere of radius R carries a total charge
Q, and is set spinning with angular velocity ω about the z axis.

(a) What is the magnetic dipole moment of the sphere?

(b) Find the average magnetic field within the sphere (see Prob. 5.59).

(c) Find the approximate vector potential at a point (r, θ ) where r � R.

(d) Find the exact potential at a point (r, θ ) outside the sphere, and check that it is
consistent with (c). [Hint: refer to Ex. 5.11.]

(e) Find the magnetic field at a point (r, θ ) inside the sphere (Prob. 5.30), and check
that it is consistent with (b).

Problem 5.61 Using Eq. 5.88, calculate the average magnetic field of a dipole over
a sphere of radius R centered at the origin. Do the angular integrals first. Compare
your answer with the general theorem in Prob. 5.59. Explain the discrepancy, and
indicate how Eq. 5.89 can be corrected to resolve the ambiguity at r = 0. (If you
get stuck, refer to Prob. 3.48.)

Evidently the true field of a magnetic dipole is29

Bdip(r) = μ0

4π

1

r 3

[
3(m · r̂)r̂ − m

] + 2μ0

3
mδ3(r). (5.94)

Compare the electrostatic analog, Eq. 3.106.

Problem 5.62 A thin glass rod of radius R and length L carries a uniform surface
charge σ . It is set spinning about its axis, at an angular velocity ω. Find the magnetic
field at a distance s � R from the axis, in the xy plane (Fig. 5.66). [Hint: treat it as
a stack of magnetic dipoles.] [Answer: μ0ωσ L R3/4[s2 + (L/2)2]3/2]

29The delta-function term is responsible for the hyperfine splitting in atomic spectra—see, for exam-
ple, D. J. Griffiths, Am. J. Phys. 50, 698 (1982).



5.4 Magnetic Vector Potential 265

x

z

y

ω

L/2

L/2

R

FIGURE 5.66


	Pages from Electricity_and_Magnetism_-_Purcell-3rd Edition.pdf
	Pages from Electricity_and_Magnetism_-_Purcell-3rd Edition-2.pdf
	Pages from Electricity_and_Magnetism_-_Purcell-3rd Edition-3.pdf
	Pages from David J. Griffiths-Introduction to Electrodynamics-Addison-Wesley (2012).pdf



